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Solving equations (3) md (4) for f(s) end g(s) gives the Laplace 
transform of y(X) and 8 (x) , respectively, aa 

Y(s) = ( 
,3 + s~)y2.+ (s2 + s)n, + pt3l - f3e-sz1[rer(Z~ - 0) - et(G + 'I! 

q(s) 

(s2 + B)ege2’ryr “(21 - 0) - y’ “(21 + 0)) 

4w 

and 

4 
8(s) = 

8 81 - 7sY2 - 7Y3 - Bp + 7e -sz y”’ 
1[: ” ’ (zl + o)I 

q(s) 

t a- + 
&), -szlp yzl - 0) - eI( 11 + 0)-J 

q(B) 

(5) 

(6) 

where 

q(s) = s6 + 6s 4 - as2 + 7$ - c& 

Goland and Luke (reference 4) showed that y(x) and O(x) could be 
written aa a converging se&s' by expmdFng $he transforms (5) and (6) 
in temw of symmetrfc polynmials of the squaxes of the roots of q(s) 
and applying the averse +m3nsfomm A discu~sicm of this expansion is 

given in section 4 of appendix A where it is shown that l/q(s) can be 
written as 

&J=-gE~ 
n=O 

where 

To = 1 

Tl = -8 

T2 = S2 + a 

T3 = 
-63 - afi -Br 

. . . . . 

(7) 
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For n2 3, 

T, = -Sq-1 + q-2 + (d - PY)Tn-3 (8) 

When the series e 
h-b0 8qlX%tiOIlB (5) T 

ion of l/q(s), e uation (Z), is stistituted 
and 6) tie tiansfom 3 a) and e(s) becom.8 sums of P 

FnfFnite Series With t8rmEl Of tW0 d.iSttiCt tYp8Sj that*S, teI3US Of types 

where m is a posFtive integer. 

The inverse tiplace transfomn of A 

reference 9)for x > 0 is 

Etm (888 pair no. 3, p. 295, of 

(9) 

Be - ax0 
and the inverse Laplace transform of 

Sm 
(see patr no* 63, pa 298, 

of reference 9) for X >Xo 20 is - 

(10) 
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3UJTTEROEAUNlFORMWINGWITHARARBITRARILY 

PIACED MASS ACCORDlEG TO A I3IEfFEREMTIAL- 

EQUATIONANAIXSIS AND A COMF'ARISON 

By Harry L. Runyan and Charles E. Watkins 

A method is presented for tie calculation of the flutter speed of a 
uniformwing carrying an arbitrarily placedcancentratedmass. The 
method, an extension of recently published work by Goland and Luke, 
involves the solution of-the differential equations of motion of the 
wing at flutter speed and therefore does not require the assmption of 
specific normal modes of vibration. The order of the flutter determi- 
nent to be solved by this method depends upon the order of the system 
of differential equations and not upon the number of modes of vibration 
involved. 

The differential equations m-8 solved by operational methods end 
a brief discussion of operational methods as applied to boundary-value 
problems is included in one of two appendixes. A ccmRarison is made 
with experiment for a wing with a 18rge eccan-trically mounted weight 
and good agreement in obtained. Sample calculations 8re presented to 
illustrate the method; end curves of amplitudes of displacement, torque, 
and shear for a particular case are compared with corresponding curves 
computed from the first uncouplednormal mOd8S. 

For convenience, the method employs two-dimensional air forces 
and could be extended to apply to uniform wings with any n&er of 
arbitrarily placed concentrated weights, ane of which might be considered 
as a fuselage. The location of such masses as engines, fuel tanks, and 
landing-gear installations might be used to advantage in increasing the 
flutter speed of a given wing. 

IRTRGDUCTION 

The comma procedures in flutter analysis of an airplane wing 
involve many simplifying assx.nnptions. In particular the degrees of 1.. 
freedom of the wing are usually determined by choosing the first few F- 
normal modes of the sbucture, and the wing motion at flutter is then 
described in terms of these chosen modes. This approach of employing 
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prescribed modes is often adapted to,,the Rayleigh type analysis of 
vibration and may be referred to as Rayleigh type &al.ysis. 331 
specific calculations with this method the amo~ntof~~~ k required is 
PrOpOrtiOnal to-the rnrmber of normal modes involved. Ln particular, the 
order of the-flutter determinan t-that m-ust be solved depends directly 
upon the number of modes tivolved. For eimpl8 wings, without concen- 
trated masses, the Re$leigh type analysis usually yields satisfactory 
results with not more than two or three normal modes. However, if-the 
wing carries cozen&a-ted masses, such as engine, fuel tank, or lading- 
gear i.UBtalktiCXlS, so many normal modes may be required tu obtain satis- 
factory results that the Rayleigh method may not be the most-feasible 
msthod. 

ItI cases Whme many dE@tX3es of freedam are involved the most logical 
. procedure would be to treat the system of differential equations of 

motion of the Qing rather than to choose specific modes. Ltbis method is 
in generalvery difficult and tedious to carry through, although it-has 
the advantage that the order of the flutter detezminan tthatmustbe 
solved depends ori@ Upon me order Of the system of differential 8qUaklaaS 
and not upon the number of mod88 of vibration &IVOlV8d. 

As earQ as 1929 Kcssner (refergnce 1) used the differential 
equation approach to formulate the problem In the form of-an integro- 
dwferential equation for a wing of general plan form. K%Sn8r Set up 
some particular examples end suggested a method of solution by a proc8SS 
of iteration. This method was not followed up Until during th8 war 
when some related work was undertaken Fn Germany but not finished0 
Wielandt (reference 2) has recently made contributions to the treatment 
of nonself-adjoFn-t differential equations by iterative processes. 31 
the light of these contributions perhaps the problem of flutter analysis 
as proposed by Kiissner warrants further investigation. 

Recently, Coland (reference 3) applied the differantial-8qUation 
method to a uniform cantilever wing and was abL8 to csrry out the 
solution of the flutter problem by straightforward mstiods. In refer- 
ence 4 Goland and LuZre etinded the solution of the problem of the 
unifomwhg to include a uniformwing carryingaf~selage at the 
samispan and concentrated weights at the tips. ColandandLukemade 
use Of th8 tiplaCe tI?ansfOIZI to solve the differential 8q'LBtfOTIS by 
operatianalm8thod.s for both the symmetric and anklsymmstric typ8s of 
flutter. In both references 3 and 4, the objective we.~ to compare 
flutter speeds and certain flutter parameters for specific uniform 
wings calculatedby the differential-equatioasmsthodwith the same 
qusntities calculated by the Rayleigh method when only the fundamental 
bending and torsion modes were used in the calculations, Fairly close 
agreeZn8nt- between resTLIt calculatid by the two methods were obtained 
in both references 3 and 4. No comparison with experIj%ent, however, 
was made in either case. 

I 

i 

The results of a systematic ser%es of f%$%& tests made to 
determine the effect of concentrated Weights and concerrtrated weight 
positions on Lo fluttsr speed of a uniform cantilever wing are reported 



NACA TN No. 1848 3 

in reference 5. After theee experiments were finished, an attempt wa8 made 
to compare the results with a theoretical snalysis by the Rayleigh method. 
31 cases where the -8s of the weight was of the same order as that of the 
wing and placed so that the distance between its center of gravity and the 
elastic axis of the wing was a considerable fraction of the wing chord, 
however, several normal modes would have to be employed and there was no 
way of knowing in advance just what rnmiber should be used. Because of 
this difficulty andbecause the wingwas a uniformwing, themostextreme 
case was chosen from reference 5 and investigated by the differential- 
equations method by following an extended procedure of Coland and Luke. 
The purpose of this paper is to report the results of this investigation. 

The paper consists of the main text and two appendixes. In tie 
msin text the differential-equation method is set up for any uniform 
cantilever wing with an arbitrarily placed concentrated weight end the 
solution, based on an extension of the method used by Goland and Luke, is 
developed. Application is then made to a perticuler m-weight system 
used in reference 5, end cr4nparisan with experimental results is given. 
The mass of the weight (weight labeled 7a in reference 5) was about 
92 percent of the mass of the wing and at each spanwise weight position 
the weight was placed so that its center of gravity was about 0.41 chord 
forward of the elastic axis of the wing. (It may be mentioned for the 
sake of ccxumison that in the numerical exemple treated in reference 4, 
themass of theweightwas c&y 39 percent of themass of the wing and 
placed 0.1 chord behind the elastic sxis of tie wing.) The geamstric 
aspect ratio of the wing was 6, which was considered large enough to 
warrant the use of two-dimensional air forces without aspect-ratio 
corrections for oscillating instability (not necesserily so for the 
divergent type of instabili~ (see reference 6)). One other simpli- 
fication was the cuuissicm of terms due to structural damping. The 
computed results agree remarkably well with experimental results, 
particularly in regard to trends. 

In appendix A the method used by Golend end Luke, which includes 
the derivation of the differential equations, for a wing carrying a tip 
weight is outlined and extended to a wing carrying an arbitrarily placed 
weight. A somewhat general but brief discussion of operational methods 
of solving boundary-value problems is included and illustrated with a 
simple example for readers who might be interested but are not familier 
with the operationalapproach. 

In appendix B the derivation of the flutter determinant is ccm- 
pleted and a method of solving the dete rminant is illustrated by a 
detailed calculation of the flutter speed for the wing and one weight 
position of the wing-weight combination discussed in the test. As a 
final topic in this appendix the solution obtained for the flutter 
determinant is used with the solutions of the differential equations to 
calculate the amplitudes and phase sngles of the deflection curves of 
the wing-weight system at flutter speed. 
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SYMBOLS 

(The syzibols are given in terms of a consistent set of units that 
are convenient for the computations in this paper. They canbe converted 
to any desired set of units by proper attention to the dimensions 
involved.) 

a nondimensional distance of elastic axis frommidchord 
measured in half-chords, positive for positions of 
elastic axis behind midchord 

b wing half-chard, feet 

chordwise distance ofwing center of gravity from 
elastic axis, positive for center of gravity behind 
elastic axis, feet 

e2 

63 

I 

chordwise distance of weight center of gravity from 
elastic axis, positive for center of gravity behind 
elastic axis, feet 

gravitational constent, feet per second per second 

mass moment of inertia of uniform wing per unit-of 
spanwise length, referred to wing elastic axis, 
pound-second* 

IW 

=1 

mass moment of inertia of weight referred to wing 
elastic axis, foot-pound-second* 

-I 
radius of gyration of wing sections about wing elastic 

axis, feet 

K2 radius of gyration of weight about elastic axis, feet 

k reduced-frequency parameter 

L aerodynamic lift force per unit of spenwise lengti 

semiepan of wing, feet 

location of weight measured fram w3ng root, feet 
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LllGw%>% aerodyne&c coefficients as tabulated in reference 7 

M aerodynamic moment per unit of spanwise length *en 
about elastic szi.s 

MY+%’ 

Q + IMQ' =srpb4M,- 

W 

m 

WW 

N 

T 

R&! 93 

8 

t 

Tn 

vO 

V 

& 

X 

y(x,t> 

Y(X) 

E1b 

G-J 

l- 

weight 

Lh($ + a)] 

of wing model, pounds 

5 

mass of dng per unit length 

weight of concentrated weight, pounds 

transverse shear force in wing at station x 

torsionalmcment in wing at station x 

roots of ctiic equation 

operator used in Laplace trensformation 

time coordinate . 

sum of all symmetric polynomial functions in Rl, B, R3 
which eze of degree n 

sxperlmental flutter speed for wing without weight, 
feet per second 

flutter speed, feet per second 

reduced flutter speed 

spenwise coordinate measured from wing root 

general mode shape function in bending 

mode shape function in bending after assumption of 
harmonic motion kyl(x) + iy2(x)) 

flexural rigidity of uniform wing, pound-feet2 

torsional rigidity of uniform wing, pound-feet2 
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K 

P 

A 

4 

@(x,t) 

ad 

cl3 

f 

ma88 ratio ( ) 
fiP@ 
-iii- 

air density, slugs per cubic foot 

complex value of determinant 

value of A whenreal andimaginary parts are equal 

general mode shape function in torsion 
I 

mode shape function in torsion after aseumption of 
hazmonic motion (82(x) + leg(x)) 

circular frequency at flutter, radians per second 

frequency, cycles per second 

As mentioned In the Introduction the differential equations that 
govern the motion of a uniform wing at flutter speed, as derived by 
Goland in reference 3, and a method of solvFng the equations for a 
uniform cantilever wing cerrying an arbitrarily placed weight, based on 
a method developed by Goland and Luke in reference 4, are discussed in 
appendix A. This section, therefore, is devoted to a brief discussion 
of the differential equations of motion of the wing, the boundary candi- 
tlons, solution of-the boundary-value problem by means of the Laplace 
transform, and the solution of the flutter determinants 

The differential equations and boundary condzLtions that govern 
the motion, at flutter speed, of a cantilever wing of length 2 113th 
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b 

a concentratedweightplaced 21 units along the spanfrcmthe root 
section and e2 units forward of the elastic axis of the wing, as derived 
in appendix A, are 

p(x) - cry(x) - pe(x) = 0 (1) 

e"(X) + 7y(x) + se(x) = 0 (2) 

(4 Y(O) = y'(0) = e(0) = 0 

b) m&'(z) = EIby"'(z) = &J@'(z) = 0 

(*4 EIS, y”‘(21 - 0) - 7 C 
"'(21 + o)] = - ~u?[YlZl) + w(q)3 

(d) $8' (21 - o> - @'(zl + o)]=$JJ2[@2+l) + Q2'('l)] 

where 

co2 ,=-(,+Ly+iLy') 
E1b 

P 

7 

6 

and where y(x) is the displacement of a chordwise element of the elastic 
ezis of the wing at span position x 'due to bending; E)(X) IS the corre- 
sponding displacement due to torsionj primes associated with y and 8 
indicate differentiation with respect to -Xj EIb is the flexural rigidity 
of the tiqj GJ IS the torsional rigidity of the -j 2 is ma88 of the 
Weightj m is mass per unit length Of WFngj and Cu is the circular 
frequency of bending and torsion at flutter. In condition (c) the 

notation y"'(Z1 - 0) indicates that y "I(x) is to have the value that 
it approaches as x-+21 from the inboard side of the weight 
and y"'(Zl+ 0) indicates that y "'(x) is to have the value that it 
approaches as x-21 from the outboard side of the weight. Similer 
manings are given to e1(21 - 0) and e*(21 + O), 
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The quantities i$ + iI$, k + iI& b$ + iM/, end Q + j&l& 
ten be written in terng ofYabulated qmntities as follows: 

31 reference 7 the values of h, L,, Mh, end s are eqressed In terms 
of Theodorsen's F and G krnctions of reference 8 and tabulated for 
various values of the reduced speed v/ku. 

The root conditions (a) end the boundary conditions (?I), of the 
boundery-value problem/are the usual conditions that must be imposed 
upon the equatim of a vibrating cantilever beam (or wing). Conti- 
tions (c) and (d) stipulate discontintities of determinable magnitudes 
Fn tmnsverse shearing force and torque, respectively. 

i 

Apply* the Laplace transform (see appendix A) 

to equations (1) and (2) and mak3ng use of conditions (a), (c), and (d) 
gives -7 

s4m - sy* - y3 -l- .-% y' 1' 
c (21 - 0) - y" '( 21 + o)] - G(s) - @(s> = 0 

(3) 

and 

s*g (6) - 81 + pz e'(z1 + o)] + se'(a) +Jib) = 0 (4) 

where 

Y2 = y"(0) 

y3 = y"'(0) 

81 = e'(o) 
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and 

e(x) = el - YY* 

co 

1 

T 8n+4 

(2t + 4)! 
n=o 

- YY3 
= %x%+5 

II 
n=o 

(2n + 5)! 

6 ela + e’(21 - 0) - 6W1 + 
T,(x - 2$2n+5 

(2n + 5): 

-fS na (2n + l)! 1 
+ y 

[ 
y”‘(Ll - 0) - y yzl + 6@&~ (12) 

where in both equation (11) and equation (12) the terms involving (x - 2$ 
are to be cmsidered as zero when I L- 21. 

Equations (11) and@) ere general expressions for the amplitudes 
or displacement8 of a point X of the elastic axis of a uniform wing 
vibrating in bend- and torsion under the conditions of flutter with en 
arbitrarily placed concentrated weight. When the weight is concentrated 
at the wing tip the equations correspond to those obtained by Golmd 
except for a difference In root conditions. when the weight is con- 
centrated at the root (or if the mass of the weight is reduced to zero) 
the equations reduce to those for a mifom cantilever wing. These 
equations may appear rather formidable in their present fomj however, 
only the first few terms of each sutmnation seem necessary for mst cases. 

In the derivation of the flutter determinan tin appendixBiti8 . 
shown that since terms Fnvolving (x - 21) drop out of both equation (XL) 
and equation (12) at x = 21, the values of ~(2~) end e(tl) can be 
obtained frcm the terms not involving (x - 2$. Then, by mking use of 
conditions (c) and (d) again, linear expression in Y2, Y3, and G1 can 
be substituted for the bracketed expressions . 

[y11'(21 - 0) - Y"'(Z1 + o)] 



NACA TN No. 1848 

(8) 

When the series e 
Into equations (5) and "4"" 

ion cf 'l/q(a), 8 uation ( is MbstItuted 
6) the transforms y a) and ? i 

), 
(8) becam sums of 

infinite series with terra of two distinct wpesj that is, terms of types 

and 

where m is a positive Fnteger. 

Lb0 Fnverse Laplace transform of A sm (see pair no. 3, p- 295, of 

reference 9)for x>o is 

and the inverse Laplace transform of BeiIs (see patr no. 63, pm 298, 

of reference.9) for x >+a0 is . 

(9) 

(10) 
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When the expression for l/q(s) from equaticm (7),is substituted into 
equations (5) and (6) and the inverse transforms is applied, the following 
series expressions of Y(X) and 0(x) can be d%%ained: 

.i 

al 
Y(X) = y* x 

n=O 
~7gg+$-~]+~3[9g? 

m 

t 

T x&+3 + n 
(2n + 3): 

n=O 1 
- 

Tn(X - ZI)*~+~ 
0) - ef(zl + 

(*n + 5)! 
. 

+ 
O1 T,(x - zl)2n+3 

z- 
n=O 

(2n + 3): 1 
, 
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and 

e(x) = el m %P+’ 
1 
n=O 

(2n + l)! 

00 T an+4 
- YY* 

Ix 
n=o 

(2z + 4)! 

- @la e'(21 - 0) - W21+ 0) 
I 

1 
+ y 

i 

y"'pl - 0) - y"' z1 + 0 O1 

( ik 

k&2 
. 

W) 

where in both equation (l'l) end equation (12) the terms involving (x - 2$ 
are to be considered as zero when x = 21. 

Equaticms (XL) and (12) are general expressions for tie amplitudes 
or displacemsntof a p0Fn-t x of the 0Laatic axis of a unifozmwing 
vibrating in bending and torsion under the cond&tio+ of flutter with an 
arbitrarily placed concentrated weight. WhentheweighHs concentrated 
at the wing tip the equations correspond to those obtained by Goland 
except for a difference in root conditions. when the weight is con- 
centrated at the root (or if the mass of the weight is reduced to zero) 
the equations reduce to those for a uniform cantilever wing. These 
equations may appear rather formidable in their present- fOZTRj however, 
ouly the first few terms of each summation seem necessary for mostcases. 

In the derivation ofthe flutter deterMnan t in appendix B it is 
shown that since tem~ involting (x - 11) drop out of both equatim (ILL) 
and equation (12) at x = 21, the values of ~(2~) end e(21) can be 
obtained frcm the terms not involving (x - 24. Then, by making use of 
conditions (c) and (d) again, lineax expression in Y2, Y3, and 81 can 
be substituted for tie bracketed expressions 

[yq21 - 0) - y"'(21+ o)] 



13 NACA TN No. 1848 

and 

[e’(ll - i) - e’(Zl.+ O)] 

After the substitutions ere made, equations (XL) and (12) will contain 
only the three undetermined coefficients Y2, Y3, and el for any 
particular wing-weight systan.of the Qpe under consideration. Observe 
that conditions (b) have not yet been used. If these canditiana sre 
now imposed upon the equations, there is obtained a sy&&n of three 
linear homogeneous equations in Y2, Y3, end 81 that may be written 
for reference as 

AiY2 + BiY3 + Ciel = 0 (13) 

where I = 1, 2, and 3. 

The condition that a system of equations such as equations (13) have 
solutions other than the trivial solution 

~2 = y3 = e1 = 0 

. is that the determinan t of the coefficients Ai, Bi, and Ci vanish 
(reference 10). This corresponds to the border-line condition between 
damped (stable) and undemped (unstable) oscillations or to the point at 
which flutter occurs0 It will be noted that the order of this detezmi- 
nant depends c&y on the order of the system of differential equations. 

The actual coefficients corresponding to Ai, Bi, and Cl are 
complex functions of the frequency w, the reduced flutter speed v/bu, 
and certain determinable characteristics of the wing-weight system. The 
true flutter speed is easily calculated when corresponding values of LU 
end V/&U ereImown. These quantities mey therefore be considered as 
(the only) variable peremeters in the dete rminsnt of coefficients and 
the problem of finding the +zue flutter speed is reduced to that of 
finding corresponding values of these paremeters that cause the detertni- 
nant, hereinafter called the flutter determinant, to vanish. If v is 
set equal to zero the air forces drop out and the resulting detemnant 
gives the coupled modes of vibration of the m in still air. On the 

' other hand,if w is set equal to zero the nonoscillatory or divergence 
condition is obtained. 

Several ways of solving the flutter dete rmAne& are mentioned in 
reference 6. Although more informative methods etist, a graphical method 
was adopted for the present work. For example, a value is assigned to 
one parameter, preferably v/W; the flutter de-be Mninantis then evaluated 
for this value of v/W and several values of the other parameter LD* 
The values of the flutter determinan t obtained In this zmmer are complex 
numbers and if the real end imaginary parts of a sufficient number of 
determinant values are separately plotted against w, tk,3 point or pointis 
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where the real and imaginery parts are equal are obtained. If this 
process for other values of vb is repeated, a locus of determine&, 
values with equal real end imaginary parts can be-plotted against 
both v/t~ and UJ. When enough points are de termined these plots give 
the values of v/t!& and UJ that cause the dete rm&ant to vanish. 

An illustration of.the process of solving the flutter determinant 
as described in the preceding paragraph is given in appendix B which 
contains the complete solution of the determinan t forone weight position 
$f the particular wing-weight system described,,in the sectian entitled 
Application to a Specific Wing-Weight System. 31 general, when solving 

the flutter determinen 
of v/tU and 03 

t by the preceding method, if the assumed values 
are in the neighborhood of their true values, only a few 

points need be computed to obtain a solution. In the-absence of experimental 
values of- these parameters and in view of the work involved in determining 
other paremeOer8 that depend on v/bru, it will be found advisable to use 
simplified methods to obtain approximate values with which to start‘the 
solution. .i,. .- 

AELICATIONTO ASFDXFICWl3?G-WE3G~~~ 

Attention is now turned to the application of the boundary-value 
problem discussed in the foregoing section to a specific problem. The 
wing-weight system that has been analyzed consists of-a particular 
unifornl cantilever wing and weight combination described in reference 5. 
The weight was considered as concant;rated at differant specified span 
positions but always at about 0.41 chord forward of the elastic axis 
of the wing. This weight was selected because of its-high'mass crimpared 
to that of the wing and because of the large eccentricity due to the 
distance between its center of gravity and the elastic axis of the wing. 
Furthermore,by using only the fundamentalmodes, first bending end first 
torsion, the Rayleigh tsge analysis had failed to give any reasonable 
results for this particular wing-weight ccrmbinaticn. Pertinent data, 
based on measured characteristics of the wing as taken from reference 5, 
with the units ir-feet and pounds are 

Chord,feet.- .D .* ..*........* .O...... 
Length,feet . . . . ..D.............~-..~.. 

2/3 
4 

Aspect ratio (gecxuetric) . 0 l o . . . 0 . . . . . . . . . . . 6 
Taperratio ...O.................... 
Airfoilsecti~ D . . . . . . 0 . o . . . . . . . . . . . . WA 16-01; 
w, pounds 0. .*o . . 0 . . . 0 . . . . . . . . . . . . . . . l 3.48 
I, pound-second. D . ! o o :_. . . . . . . . . . . c. . . o . 0.00080 
EIb, pound-feet* 
GJ, pound-feet2 . : '1 

0 0 e:................. 977*@ 
..D . . . . . . . . ..O . . . 

l/s (standard air, no &ktj . . . . . . . . . . . .‘l-. o . . . 
480.56 

32.6 
el,feet D O................D.... . . . . 0.013 
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and, besed on measured characteristics of the weight, are 

w$; gmy . . . o...................... 3.182 
. . . . . . . . . . . . . . . . . . . . 

L, foot-pokd-~e~oj2 . . . . . . . . . . . . . . . . . . ; . 
-0.2728 

0.013625 

Calculation of the flutter parameters have been made for the wing 
without the weight end for the wing with the weight at seven different 
positions. The calculated results are compared with experimental results 
in figure 1 and in the following table: 

Calculatad Experimental 

h 17 
30 
45 
46 l 

. 

48 

--e-w 

-0.2728 
-.2728 
-.2728 
-.2728 
-.2728 
-.2728 

25.27 
19 -23 
28.04 
30.69 
25-67 
24.87 
23.60 

6.29 
8.23 
6.93 
8.1~8 
7.45 

76.:; . 
_- 

333 
331 
407 
526 
401 
368 30 

22.1 17.4 87:gng 
96.8 6.81 

b) 
b) {:I 
21.8 8.06 
21.4 7.14 

334 

fB b) 
368 320 

aIt is found in reference 5 that good flutter records for this wing-weight 
system were obtained for several spenwise weight positions between the 
root section end a point 17 inches from the root section; but with the 
weight at 17 inches from the root section the wing appeared to diverge. 
However, the oscillograph records for this case showed two possible flutter 
points, one corresponding to a frequency of 16.3 cps and another corre- 
sponding to a frequency of 26.8 cps (only the first of these is recorded 
in reference 5). When the weight was moved farther outward from this 
point, definite divergence was noted until the weight was at a point 
46 inches from the root section. At this point and from this point to 
the tip good flutter records were obtained. 

bDivergencee 

It will be noted in the table that all the calculated flutter 
speeds are within 7 percent of the experimental values and the calculated 
frequencies and reduced speeds are within 15 percent of the experimental 
values. The calculated flutter speeds are generally slightly higher than 
the experimental values for Z1 217 and slightly lower for 21 2 46. 
There is no such consistent trend in the other parameters. 

. 

In figure 1 the ratio of both calculated and experimental flutter 
speeds for the wing with a weight to the flutter speed of the wing with- 
out a weight ere plotted against span position of the weight. The 
important thing to note in examiMng figure 1 is that the shape of the 
theoretical curve follows the shape of the experimental curve very 
closely in the regions tiers experimental flutter was obtained. The 
horizontal dashed line in figure 1 represents the divergence speed for 
the wing as computedby themethodof reference XL. Although-the 
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correct divergence speed for different weight positions would probably 
very, being s-what lower with the weight at the tip than at the root, 
owing to the effect of the presence of the weight on aerodynamic forces, 
the agreement of the approximate value with experUenta1 values IS 
satisfactory. 

General expressions for the deflectian curves are-derived in 
appendix B from which amplitudes and phase angles for curves of deflection, 
slope, moment, and shear in bending end amplitudes and.phase angles for 
curves of angular deflection and torque in torsion can be computed. The 
phase angles end amplitudes for the deflection and shear curves in bending 
(fig. 2) end the phase angles and amplitudes for the angular displacement 
and torque in torsion (fig. 3) have been computed with reference to a 
unit tip deflection for the weight position 21 = 17 inches. Ln figure 4 
the amplitudes in deflection and sheer in bending from figure 2 are 
compared with the deflection and shear curves due to the fundamental 
uncoupled bending mode of the wirig,and in figure 5 the empUtudes in 
engular deflection end torque in torsion froan figure 3 me compared with 
the angular deflection and torque curves due to the fundamental uncoupled 
mode in torsion. There is a notable difference in the shape of the 
amplitude curves computed by the present method and those caputed frcxn 
the first normal modes. This discrepancy indicates that several modes l 

would have to be employed to obtain satisfactory results by the Rayleigh 
type enalysis. 

The method discussed in this paper is not limited to a uniform 
cantilever wing with a single weight. Ry proper attention to the boundary 
conditions the theory can quite easily be extended to apply to a uniform 
wing carrying any rnxtiber of arbitrarily placed weights, one ofwhich 
might be considered as a fuselage and made to yield the so-called 
s~tric and entisymaetric types of flutter. Furthermore, for conven- 
ience of application, theoretical values of two-dimensional air forces 
have been used. However, since the method does not depend on the 
particular form of air forces involved, any known or available aero- 
dynmic data could be used. In any event, the method is tedious and 
would, therefore, not be ret ommended over the Rayleigh type enalysis 
when it might be known that only the first few normal modes of the 
structure are sufficient to give satisfactory results. 

For wings that are not uniform the differential equations for 
flutter conditions reduce to ordinary differential equations with 
variable coefficients. In this case the solution would, in general, be 
much more difficult to obtain. For general. cases there would be no 
advantage in the operational method of solution although-an iterative 
process probably might be used to great advantage., 

, 
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In conclusion it is pointed out that the location of such masses 
as engines, landing gears, and fuel tenks might be used to advantage In 
increasing the flutter speed of a given wing. As shown by the particular 
problem analyzed herein snd by other experiences a definite region exists, 
peculiar ix a given wing, in which masses added forward of the elastic 
axis of the win@; tend to increase the flutter speed of the wing. 

Langley Aeronautical Laboratory 
National Advisob Committee for Aeronautics 

Langley Field, Va., November 30, IL948 
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of a 
( see 

OUTLINE AND EXTENSION OF MBZHOB OF --Is 

AsmmmE83AND4 

1. Derivation of the Differential Equations That Govern 

the Motion of--a Wing at Flutter Speed 

Consider a spanwise element of incremental 
wing oscillating in bending end torsion in 
sketch). 

length dx at station x 
a free stream of fluid 

-- 
/ tY - / 
/ 
/ X =3x- 

--- -.-_- 

2--( 

The displacements Y and 8 of an element of the elastic axis are 
functions of x end t. Inorder that this elementremalnin dynamic 
equilibrium the external forces and mcanents on -the element must balance 
the inertia forces and mcments. 

The externeJ. forces end moments consist of transverse shearing 
forces end torsional mmnsnts, which are transmittedfromone element of 
the wing to the next, plus the aerodynamic lift force and pitching 
moment and intmmztl or structural damping. ,Structuraldamping is not 
taken into consideration in this discussion, although its inclusion 
would add no c~putational difficulties~ 
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The transverse sheerlng force acting upward at x is 

m = -III-b - 
33X 

andthatdiFng amma at (x+ dx) is 

w 

Similarily the n0s0-am torsional moment ectlng at x IS 

T=GJ aa 
TE 

and at (X + dx) the nose-ug torsional mcment is 

(A3) 

(A4) 

The two-dimensianal aerodymmic forces acting on an elemekt dx of en 
oscillating airfoil have been derived by Theodorsen (reference 8) and 
can be written as a lift force end aerodynamic moment acting about the 
elastic axis of the w3ng, respectively, as 

The inertia force of the element dx ten be written 

end the inertia moment as 

( 
I & 
at* +&%X at* > 

(AS) 

M3 

(A7) 
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Diagrams of the forces end moments acting on an element of whqq of 
length dx at station x are aa follows: 

Imgoxlng the conditions of-dynamic equilibrium of the elet at x by 
equating inertia forces to external forces and Inertia moments to eXte=l 
mcmentS gives the two differential equaticms that govern the motion of 
the wing: 

2. Boundary Conditions for a Uniform CantLlever Wing Carrying 

an Arbitrarily Placed Weight at Flutter Speed 

The boundary conditions that must be imposed upon equaticms (A9) 
for a uniform cantilever wing are 

(1) y(o,t) = 0 

(2) "Ib[&!r,t)L = o 

(A91 

. 
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. 

. 

. 

Fese exe the usual conditiona that must be iqosed on a vibrating centi- 
lever beam. Condition (1) is the cmdition that the end at x = 0 is 
supported (either hinged or btilt in). Ccnditians (2) end (3) Imply 
that this end is fixedorbuilt in. co~itioqs (41, (51, ana (6) apls, 
respectively, that there is no bending moment, transverse shearing force, 
or torsional moment acting at the tip x = 2. 

If there is en arbitrarily placed weight on the wing, other condi- 
tions must be imposed that will determine the effect of the weight upon 
the motion of the wing. IT the weight is considered as concentrated at 
some point on the chord line at station x = 21, it will create discon- 
tQUiti.es in both transverse shear and torsional moment. The magnitude 
of these disconti.nuIties are lmown functions of the mass of the weight, 
the locatim of the weight, end the acceleration of the wing. The 
rama- conditions required to complete the boundery-value problem for 
the general motion of the weighted wing are, therefore, 

= Ww a* 
I 

a2 em 
g at2 y(x,t) -I- 9 - at? e(x, t) 

1 =I1 

(8) 

ww ;i2 
=-y ‘2 a$ 1 - Y&t> + IQ* E- Q(x,t) 

at* 1 x=21 



22 ..r IUCATNNo. 12348 
. 

For the pu$pose of flutter analysis it is assumsdthat the motions 
in both bending and torsion are hsrmonic ma that the frequencies in 
bending and torsion are equal. Therefore, only the particular form that 
the solution to the boundary-value problem has when these conditions 
obtain need be sought. These conditions imply that Y(x,t) end @(x,t) 
are of the forms 

y(x,t) = y(x)eirot I 

e(x,t) = e(x)e 
iwt J 

, (ml 

where, on the right-hand side of equations (AlO), y and 8 are now 
complex amplitude functions ofthe span coordinate x. m which the 
shape and phase relation ofthe wing at any fixed time during flutter 
can be obtained. 

Yf the values of Y snd 8 from equations (AlO) are substituted 
into both differential equations (Ag) and into the boundary c&tions, 
the problem is greatly simplified. The differential equations become 
independent of t i33a appear as ore differential equations with 
constant coefficients. After making the substitution and rearranging 
terms, the equations of motion can be written as 

or more stiply as 

a4 3 - ay - pe = 0 
ax 

2 d+-yy+w=o & I 
(A‘121 

, 
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The boumlary conditions also becm independent of t and can be written 
as follows: 

. 

. 

(1’) 

(2’) 

(3’) 

(4’) 

(5’) 

(6’) 

(7’) 

(87 

Y(O) = 0 

y’(0) = 0 

e(0) = 0 

y”(2) =I 0 

y”‘(2) = 0 

e’(t) = 0 

EIb y"'(Z1 - 0) - y 
C 

"'(21 + o)] = - pfy(21) + eQe(z$J 

3. Solution of Boundary-Talus Problems in Ordkery Differential 

Equations by Operational Metho& and Application to a Beam 

CarrytnganArbitrarily PlacedWeight 

The boundazy-value problem given by equations (A22) snd conditions (1') 
to (8’) can be solved by straightforward methods of solving ord3nsry 
differential equations with constant coefficients. The operational 
method, however, is a much easierr and shorter approach, particularly in 
view of the discontinuities Fn shear and torqlre. 

Briefly, the solution of a boundary-value problem by operaticmal 
methods ccrnsists of applying -the laplace kensform to the differential 
equations, the initial conditim (root cmditions when applied to beam 
problems), and certain forms of'other boundary conditions; of solving 
the resulting system for the trknsfonn of e&h dependent variablej and 
then by applying the inversion Fneeg~KL to the results. The remaining 
boundasg conditions eze then used to set LQ relation smong whatever 
undetermined p-srmeters that mi*t remain. 

In the case of flutter snalysie a complete solution to the equation8 
is not needed but only the conditions under which an unstable equilibrium 
may exist. The relations that can be set up between the zrndetermined 
pammeters correspond precisely to this ccmdition. In other words these 
relations appear as a system of haanogeneous equaticxu and the satisfaction 
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of the condition that this system of equations have a common solutim 
other than the trivial solution corresponds to the border-line condition 
separating the tXampedand m&mped osciUa.tims of the King. 

The Laplace transform of f(x) is 

where s may be real'or complex and x >O. The sufficient conditions 
that this infinite integral ex.$stare that f(x) have no infinite discon- 
Wcuities for x 20 and that f(x) be of exponential order as x--j, 0~. 
(See reference 9.) In other WOMB finite discontinuities such as those 
appeazing in the forego- problem do not invalidate the operatioml 
approach. ..- 

The Laplace transform of the nth derivative of a cmtinuous 
function with ccmtinuous derivatives, for which the function and all its 
derivatives are of exponential order, ten be obtained directly from 
equation (Al.3) &8 

+Yx$ = d-q(B) - @f(o) - EF~f'(O) - . . . - P-l(o) (a41 

Thelkplace tmnsfomis linear in-the 881118 sense as differentiaticm 
or integra.tion. 5tis,if ai and bi are constants 

L a-#(x) + an,lPol(x) + . . . + aof + I@P(x) + . . l + bog(x) 
c 1 

+b&{P(x;) + . . . + b&{e(xjj (=5) 

Thus the Laplace tranf3fom of a linear differential equation with canstant 
coefficients is generally a sum of expressions similar to equation (Al4). 

. 
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In equation (A14) the quantities f(O), f'(O), . . . , pi"(O) 
are the boundsry conditions at the origin of the dependent variable 
(wing root) that corresponds to cm&ants of integration. When these 

. quantities are given they are put d3.rectl.y into the trsnsformsd equation. 
When the qusntities are not given they correspond to what has been 
called~terminedperameters inthe precedingparagraphs andmust 
later be determined in terms of other boundary conditions. 

Finite discontinuities in a tictian or sny of its derivatives 
are taken into account by proper attention to the limiting values that 
the function or its derivatives have cm the two sides of the disconti- 
nuity. In p3rticuler, if a function snd its first n derivatives are 
of exponential order, if the first (n - 
if the (n - 

2) derivatives sre continuous, 
l)st derivative has a finite discontinuity at xc, and if 

the nth derivative is continuous except for a singular point at xor 
(see sketch) 

f%) 
fw 

end 

P-l(x) 

the Laplace izansformofthe nth derivativehas the form 

L (4 PI = s*(s) - en-%(o) - . . . 

- sF2(0) - emax fF1(xo + 0) 
c 

- fn-qx.0 - o)] (~16) 

I 
where f(xo + 0) is the value of 
right end f(xo - 

f(x) as x approaches x. frcmt the 
0) is the vale of f(x) as x approaches x. from 

the left. In other words the terms in the brackets express the ma&-&de 

of the discontinuity in P-'(x) at x. in the (n - l)st derivative 
at xog 
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An emmination of the boundary-valm problem, equation (AC!), shows 
that the transform wiU. be given by a sum of expressions precisely of 
the form of equation (~16). 

32 order to interpret the tramformad functicm Z(s) in -tmms of 
the original function f(x), use may be made of the inversion integral 
discussed in text boclcs on operational calculWj OT one IBBJ refer 
directly to tables of‘transform~ 

As a stiple example the operational method is applied to a canti- 
lever beam carrying en ezbitmmily placed weight and assurnad to be 
vibrating in a vacuum in bendIng only. 

The boundary-value problem for this case can be written 

(Al7) 

(4 Y<d’ Y’(O) = 0 -I 

I 

b) y"(2) = y”‘(2) = 0 

(4 - 0) - yttt(21’+ . 

where the symbols have the sam meaning as Inequa.tion (Al2). 

Tf the root conditions (a) and the boundsry condition (c) me used, 
the kmmfomed problem solved for j;(s) gives 

2 Y21 p(8) =,a + -* + t& 
-a -a A 8 

_ a e'*'l h-9) 

, 

where, for brevity, Y2 = y"(O), Y3 = y"'(O), and 4 l& a =-* 
% 
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The inverse trmsform of equation (Alp) is (see pair noa* 31 
and 32, p. 296, and relation 12, p. 294, of reference 9) 

COB + ~!sinh ax - sin ax) 
203 . / 

a(x - 21) - sin a(x - 21) 1 
or 

Yb) 
y2 =- 
2a? 

cash a21 - co8 a21 

y3 + - sinh a21 - sin a21 
2lz3 ( IL 

sinh a(x - 21) 

- sin a(x - 21) 1 
where the last bracket is zero when x - 21 s 0. 

(=a 

(A=) 

Imposing bomdmy conditions (b) gives two homogeneous equations 
ti Y2 a3la Y3. Each value of a that will cause the determinant of 
the coefficients of Y2 snd Y3 to ,vanish corresponds to a mode of 
vibration. 

This result has been applied to the wFn@; and weight diSCUSS8d In 
the text of this paper with the weight located 17 Fnches from the root. 
The defl8CticX.I and shear cur-v88 due to the first uncoqled modes in 
benUng only have been cmQuted and are plotted in figure 6. Corre- 
spondlng results have been computed by a 20-station process of iteration 
dlSCU5S8a in reference 12 snd plotted in the same figIR?e. 
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4. R8pres8ntation of the Iimerse Trensfom of.the Bomdary- 

Value Problem, Equation (Kf2), by a Power Series 

Th8 transfomofboth 
fozm 

f(8) = 

Y(X) =a e(x) of 8qUatiaS (Al2) are ofthe 

(Am 

where Pl(8) end P2(8) axe polyhcmlals both of lower degree than q(s). 
Neither %(a) or P2(8) have common factors with q(s) where q‘(s) is 
of 'the. specific form 

q(s) = a6 + as 4 + bs2 + c = (2 - R&s2 - I+)($ - R3) (A231 

where the coefficients a, b, and c and the roots squared Rl, %, 
and R3 are complex. The invt3rse functicmassociat8dwith such a 

transform gives f(x) in terms of cfrculsr and hyperbolic functions 
Of XR, but with the reStit in this fm th8 process Of solv2ng the 
flutter determinant becoanss very cm&8rsome. 

By malting use of the properties of syametric functions, Golsnd and 
Luke (reference 4) outlined a simple method of ob-Mning series eXpansicm8 
for the transforms of equations (Al.2) that do88 not involve the 
meticuloufl task of finding tih8 roots of q(s). The tiversicms of the88 
expansions give y(x) and e(x) in the fomn of convergent series. 

For th8 deV8lOpWnt Of th8s8 88rieS it i8 first nSC888~ to CCZI- 
aider q(s) as a cubic in 2; namly, 

BY makw use of the binomial theorm, l/q(s) can be written as 
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Equation (&!5) is independent of any titerchange of the parameters Rl, X$2, 
and R3 and thus satisfies the description of a symmetric function in 
these parsmeters. (F or a discussion of symmetric functions see refer- 
ence 10 or eny text on higher algebra or theory of equations.) IY the 
indicated multiplication in equation (A25) is carried out, the results 
canbe written 

'rn . .+-+. . 
S2n 

0~6) 

where the general -km Tn represents the sum of all possible symmetric 
p0lyntial8 in Rl,R@,and R3 whichare of degree n andwithall 
coefficients unity. Ry making use of Newton's identity relative to 
symmetric polynomials, that is 

T, = -aTno 1 - bTn-2 - CTn-3 W7) 
. 

where the value of any Tn- 
id 

is to be disregarded when n - j <O, 
every LIn can be written terms of the coefficients a, b, and c of 
equation (A23)j for exnmple, 

To = 1 

Tl = -a 

T2=a2-b I 
T3 = -a3 + 2ab - 

. . . . . 

C 

! 
W3) 

With the aid of equation (~26) and equations (9) and (10) of the 

text the inverse transform of equation (A22) or of s(s) and g(s) can 
therefore be written as a sum Of tSl7BB Of the tSp8 given in equations (9) 

.end (10) where the Tn '8 enter as co8fficients in the numerator and ax8 

easily evaluated ti termEl of the coefficients of a koown cubic equation. 
In the application to flutter analysis only the first few Tn'S are 
usually necessary because the resulting 88r188 is generally found to be 
highly convergent. 
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DEWVATION OF TEE FIXECER B AND sAMpI;E C-TIONS 

htroduction 

51 this section the flutter determinant is formally derived and 
the mth0a described In the text for solving the det3rsnFnant is 
ilIlustrstedwith sample calculations foraspecific exmple. Also final 
expressions for the deflection curves are given from which amplitude and 
phase angle curves of deflection, sheer, end torque sre calculaha for 
a sp8cific case* The C&hikha 8JUpiitudeS St-3 COItQW8a tith COXTe- 
SpOnding cwv88 ccmputed Fran the fundamental uncoupled ~&Ode8 in bending 
ma torsion. - 

Derivaticmof the FlutterDet8rminant 

In equations (ILL) end (12) of the text it is first necessary to 
evaluate the expressions 

E"'(21 - 0) - yY21+ ON 

1 et(21 - 0) - e*(21 + 0) 1 
in terms of Y2, Y , and 81. Since terms involving (x - 21) drop out 
of both equation ( 1) ? and equation (12) for x = 21, the values of y( 21) 
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and 8(2 ) l n be obtained dir8ctl.y fK>m these eqLaatiom3. Th8 Va1U8S 
of y(2lf a~3 8(21) SUbStitUted intO ConditiOnS (C) and (d) of the t8Xt 
give the as8irea relatims; namely, 

=- 

+ 

+ 

+ 

+ (Bl) 
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e’(21 - 0) WT? - e*hf 0) = G;T~ &~(21) + 

Substituting equations (Bl) and (I%?) into equations (1l) and (12) 
giV88 

Y(X) = hl(=)Y2 + ~(x)Y3 + h+)el (33) 

e(x) = &)y2 + dxN3 + 433(x)9 w 
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. 

where 

hl(=) = 
f 

TnZnf2 
(2n+2T! 

n- 
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and 

35 

By imposing conditions (b) of the text 

Y"(2) = Y "'(2) = e*(2) = 0 

upon equations (B3) end (Bk), three equations are obtained (W3?ittin in th3 
text as equation (13)): 

. AiY2 + BiY3 -I- Ciel = 0 

where 1=1,2,and3 =a 

Al = hl"(2) 

+ = hl"'(2) 

A3 i g1'W 

Bl = h$'(2) 

% = q”(2) 

B3 = g2’b) 

Cl = p3”(l) 

c, = h3"'(2) 

c3 = q'(2) 
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&~osing the condition that the equations (13) have a solution 
other than the trivial solution Y2 = Y3 = 81 = 0 results in the flutter 
determinant 

%3~pl8 CalCIilation of.Flutter Sp88d 

aa Deflection Curves 

A method Of solving the flutter determinant given in th8 tSXt 18 
illustrated here by the solution of th8 determinant fm? the wing-weight 
ccmibination discussed in the text when the spanwise location of the 
might is 17 Fachea from the root. The values of-2 = $ thatare 
chosen are in the neighborhood of the experimental value and have 
available tabulated values of Theodorsen's function C(k) = F f in. 

Table I showa the arztual computations required to evaluate the 
coeffici8nts Ai, Bir and Cl for 2 = 7.1429 (k = 0.14) and two 
val~08 0f 2 = f (f = 25 CPS and f = 28 ~98). 

2n 
From columns @, @, 

- 
and e!J ; the determimmt.for f = 25 cps is 

(14.9200 - 2.85741) (12.83~0 - 2.03151) o(7.3286 - 0.600211) 

A= (~8000 - 3.66gyi) (10.2970 - 2m85661) -(5*47ll - 0.9333i) 

(0.17030 - 0.661341) /(o.op~~ + 0.593411) -(0.41~38 - 0.288641) 

or 

A= 1.0326 - 0.69481 

. 
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Simflarly, for f = 28.~~8, 

(18.6380 - 3.81151) (15.0860 - 2.63991) -(9-l!@ - 0.854331) 

A= (15*5930 - 5.09351) (13.0080 - 3.79461) -(7x58 - 1.39881) 

-(0.04177 + 0.870981) o(o.23526 + 0.759481) -(0.51403 - 0.370171) 

or 

A= -0.402g - 0.03121 

The aeb rminant was 8VakIated In this manner for the same value 
of v/bco and several other values of f. The -9l?OC8SS WaS then repeated 
for v=6.25 
vahe~of f 

and several values of f aa for JL = 5 .OO and several 
. The realand imaginary parts of'the %aluateddete~t 

for each value of V/IYJJ end the corresponding values of f ere separately 
plotted in figure 7. The ordinates of the intersecticms of the different 
pairs of cur-v88 of realand imaginary parts were scsled infigure 7 and 
plotted as Ae against both v/W and f in fi e 8. The zero 
ordinates of these curves give the value of 
values of f(f = 28 -04 cps) for which the 

v/km~ = 6.93) and the 
det8 rminant vanishes. Barn 

these values the flutter speed is readily calculated to be ' 

v = (146%) = (2sbf)(6.g3) = (2n)(28;04)(60g3)' = 407 fps 

As pointed out in appendix A the deflection curves at any specified 
time eze givenby equations (AlO) 

y(=, t) = y(=)81rut = y(x) (COB wt + 1 sin cd) 

g(x,t) = B(x)elLDt = e(x)(cos wt + 1 sin at)- 

-where final forms of y(x) and C(x) ere given by equations (B3) and (a) 
and where, at least, the relative values of'the undetermined coeffi- 
cients Y2, Y in equatims (B3) and(@)mustbe lmown. If 
the set of va and cu that satisfy the flutter aeteMninant 
is used to det8rmine the coefficients Ai, Bi, end Ci in equations (13), 
the333 i8 obtained a SySt8m Of three hCZUOg8n8OUS 8ql.EtiOIIS in th8 three 
UIihOWnS Y2, Y3, ad 81 that have SOlUti= Other thah th8 trivial 
s0iuti0733 y2 = Y = e1 = 0. Ef these 
throughby any on? of -the -owns, say 

equations sre each divided 
Y2, there is obtained a 
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consistent ~ly&em of three equation8 in the twt3 ratio8 Yl/Y2 and. el&. 
Any two of the -three equations ~821 theref%re be rsolved for the133 ratioe. 
Consequently, equations (B3) and (Bb) can be wrftten tith one undetermined 
parameter that appears BB a factor in each equation. l?'urthermom, since 
the coefficienta Ai, Bi, and CT are ccmplex numbers the ratloB Q/Y2 
and Bl/y2 are camplex numbers arnd equatiow (B-3) and (a) contain 
ccmplex coefficients. The real and Fmaginary par-ix3 of theBe equations 
can be separated and the equations written 

Y (4 = Y4$x) + iY&q 
i 

Hx) = Y2 0, (x) + ie,(x) C 3 
@a 

If these relaticms me substituted into equations (AlO), 

Y(x,t) = Yp gl(x)coa wt - 
[ 

7 
y,(x)dn cot + i C Y2(X)CO" cut + y+)"in c.2 

I! - 

0 (x,t) = .y2 02 (xl cm .gt - r 
c 

e,(x)~~in at + i e3(~)~0~ 0-t + e2(x)8Fn II 

or 

where - 

91 
= --l s,(x) 

qm 

e (xl 
'p2 = tan-1 e2 x -In 
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and where cpl - 'p2 represents the difference in phaee angle between 
bending motion and torsion motions at x0 

The real parts of equations (B3) are interpreted to mean the motions 
in bending and torsion taken In a positive sezme. The imaginary parts 
can then be interpreted afl representing these same m,otions with a phase 
shift of x/2 radiarne. . 
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Figure 1.- Comparison of calculahd and eicpeEtment&L flutter speeds for 
a particular.wl~~ei~l~systam. 
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Figure 2.- Plot of amplitude and phase angle of displacement and shear 
curve in bending at flutter for 21 = 17 inches (amplitude and shear 
referred to unit amplitude at tip in bending). 
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Dirtanoe along span, in. 

Figure 3.- Plot of amplitude and phase angle of torsional displacement 
and torque for 21 = 17 Inches at flutter (amplitude and torque 
referred to unit amplitude at tip in bending). 
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Figme .- Plots of amplitudes in bending displacement and torque and 
the corresponding curves computed for the first uncoupled normal nwde 
in bending for 21 = 17 inches (amplitude and shear referred to u&t 
amplitude at the tip in bending). 
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Figure 5.- Plots of amplitudes in torsional displacement and torque and 
the corresponding cur-ves computed for the first uncoupled normal mode 
in torsion for 21 = 17 inches (amplitude and torque referred to 
unit amplitude at tip in bending). 



. . 
I 

. 

- Ciomputed by presrrnt method 

.6 

.4 

.2 
F 

Dlrtanos along span, in. 

Figure 6.- Plots of deflection and shear curvea computed from the first llncouplea DK.dm in bend-w - 
by the differential equation method and by the 2Ckdation iteration procees of reference 12 
(referred to unit tip deflection). 
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